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SECTION I
INTRODUCTION

The purpose of this study is to investigate the feasibility of
applying a deflection detector to short-period seismic events recorded at the
Korean Seismic Research Station (KSRS). Another goal is to design detector
algorithms which operate on a variety of signal spectra with better operating
characteristics than would be obtained by a power detector. For any detector,
the ideal receiver will match its input time gate to the signal duration and its
bandwidth to the signal and noise spectra. However, when a variety of (pos-
sibly unknown) signals are being detected in a dynamic noise environment,
compromises are necessary. In general, no one filter will be optimal for a
large class of signals. The deflection detector represents an attempt to adapt
to such a situation by utilizing the individual frequency cells of an FFT (Fast
Fourier Transform) as a bank of filters which can accommodate signals with
widely differing spectra. At each time gate, the discrete spectral power is
measured from the lowest frequency of interest to the highest frequency of
interest. These spectral powers comprise the time series of spectral data

from which detection statistics will be derived.

The details of the detector design are described in Section IL
A statistical analysis of vhe detector's performance with seismic noise is
given in Section III. Receiver Operating Characteristics (ROC) are presented
in Section IV based on detector trials on four representative KSRS signals with
seismic noise added to their waveforms. Conclusions and suggestions for fur-

ther study are given in Section V.
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A THEORY

A, DEFLECTION DETECTOR

The deflection processor is a frequency domain detection tech-
nique. It detects large power deflections measured in individual FFT (Fast

Fourier Transform) cells.

A moving time window of 2N points of seismic data is input
to the detector and Fourier transformed. The power spectrum, or in some
cases the log power spectrum, is found at N discrete points in the usual way.
The power or log power at the kth frequency, where k ranges from 1l to N,
is normalized by subtracting its mean value and dividing the result by its

.th
standard deviation. Thus for the it segment of data we have

P, (k) - p(k)

oK) (II-1)

Zi(k) =
where Pi(k) is the power at the kth frequency for the ith time segment,
i(k) is the mean of the power at the kth frequency, and o(k) is its stand-
ard deviation. Regarding k as fixed for the moment, we can think of Zi(k)
as a random function of the variable i, with zero mean and unit standard
deviation, There are a total of N such variables, one for each frequency

index k.

At each value of i, i.e., for each input segment, we choose
the largest value of the set Zi(k), where k is now varied to find the maxi-
mum over the frequency range of interest. It is legitimate to make this

comparison over frequency, since each power has been normalized. If this

e
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maximum exceeds some preset value, called the detection threshold, a detec-

tion is declared.

The parameters K(k) and o(k) must be estimated from signal-
free sections of data. Finding the best way to do this is one of the important

problems of detector design, see Appendix A,

Another detector, called the average deflection power detector,
is also evaluated here. It is denoted Xi at the ith segment and is derived

from the deflection detector through

1
R, = o E Z, (k). (I1-2)

signal
band
These detectors are compared to one operating in the time
domain and described by Swindell and Snell (1977). There the data are pre-
filtered and the average power computed over a suitable time segment. This

power is normalized by subtracting the mean power and dividing by the stand-

ard deviation, and the resulting quantity compared to a threshold. In the pre-

sent study this form of detector was implemented in the frequency domain

)

through the equations

1
{NAt signal pi(k)} i
band

Yi = & . (II- 3)

Here At is the sampling period of the data, so by Parseval's theorem the
bracketed quantity is the average power over the ith data segment. The
mean and standard deviation of the average power are g and O , respective-

ly, which must be computed from signal-free data.

While the variables Xi’ Yi’ and Zi have unit standard devia-

tion and zero mean, all other details of their distribution are unknown for the

moment.
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B. PROCESSING TECHNIQUES
3. Normalization

The comparison of different statistical distributions is basic
to the concept of the deflection processor. As described in the previous sub-
section, its fundamental assumption is that the mean and standard deviation
of the noise are sufficient to determine the detectability of the signal. Actu-
ally, this is strictly true only when the power distributions of the individual

FFT cells, denoted PN for noise alone and P +

S+N for signal-plus-noise,

possess the properties

(1) pN is determined by its first two moments, 4 and 0, where

gand 0 may be independently specified.

(ii) PS+N(x) = PN(x-c) where c is a constant; i.e., the presence
of a signal merely translates the probability distribution a

fixed distance, c.

An examination of the noise distributions for the seismic data
under consideration (see Section III) revealed that the logarithm of the spec-
trum produced nearly normal distributions. For convenience in later calcu-
lations it was decided to perform a logarithmic transformation on the spectral

power, P(k),

P'(k) = log P(k). (11-4)

Note that this implies that the mean pu'(k) and standard deviation g'(k) of the

noise are computed after taking the logarithm of the spectrum:

p' (k) % (log P(k))

E [aog PK)Z - u (k)z] . (II-5)

o' (k)2
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For purposes of comparison, the detector is also evaluated without logarithmic

transformation.

2. Coherent Versus Incoherent Gain

Consider a particular signal spectrum S(k) to be detected in
noise having a mean spectrum py(k) and a standard deviation ¢g(k). The most
probable frequency cell ﬁ for detection of the signal by the deflection proces-
sor is the one for which Z(k) is a maximum. In practice, it was found that
this condition was satisfied in most cases by a single frequency cell of the
32-point FFT transform (see Section IV). Thus, the deflection detector is
approximately equivalent to that pictured in Figure II-1(a). Similar diagrams
are given for the deflection-power detection and the conventional power detec-

tor in Figures II-1(b) and II-1(c).

An examination of Figure II-1 reveals that the deflection pro-
cessor provides two types of gain. The first, commonly referred to as co-
herent gain (CG), is the result of maximizing Zi(k) and is given (in decibels)

by

2 : A
(signal/noise )ce11 p

CG

10 log : -
d 10 (51gna1/no1se)Signa1 ek

A A
’ S(k) /p (k)
= 10 1°g10 Z S(k)/ Z ) ¢
signal signal
band band

(II-6)

(Note that for some spectra this may be less than zero dB; i.e., a loss.) The
second gain, so-called incoherent gain, is the reduction of noise standard
deviation obtained when the maximum of a set of N random variables is it-
self treated as a random variable. In the present case, the logarithms of

the normalized noise powers in the ith data segment have an (approximately)

A
Gaussian distribution, but the distribution of their maxima Z(k) is given by

11-4
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z(k) N-1
pzd) = f x| izl (IL-7)

where G(x) is the Gaussian probability density. The standard deviation of G
is difficult to find analytically, but may be obtained in a straightforward man-
ner using Monte Carlo techniques. Denoting this standard deviation by Uz,
we have for the incoherent gain

IGd = 10 log (l/oz) . (1I-8)

This quantity is plotted as a function of N in Figure II-2,

Also shown in Figure II-2 is the incoherent gain of the deflection-

power detector and the power detector, both of which are equal to

IGp = 1l0logV N . (II-9)

This gain is due to reduction of the standard deviation of the noise power
through averaging over N points, whether they be in the frequency or time

domain.

One would expect the total gain to reflect the performance of
the detectors. Strictly speaking, this is true only in the case where
pS+N (x) = PN(x-c) . Furthermore, the incoherent gains for the deflection
detector and deflection-power detector are those indicated only when the dis-
tributions of the individual frequency cells are identical (e. g., flat signal and
flat noise spectrum) and Gaussian, Thus, in general, equations (II-5) and
(II-6) provide only a guideline to the relative effectiveness of the three detec-

tors. The degree of reliance that one may place on these indicators will be

treated in Section IV.

II-6
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3 Effects of Parameters on Detectability

The first major design parameter encountered is the length of
the processing gate T. It must be matched to the expected signal duration

and implemented such that the processing gain is maximized and the false

alarm rate is minimized. The number of false alarms per hour RF' the
probability of false alarm PF, and T are related by
R_ T
- g e B (II-10)
F 3600
Increasing T can
1) provide coherent gain by increasing spectral resolution,
(ii) provide incoherent gain by averaging over more points, and
(iii) permit a higher probability of false alarm PF for a given
false alarm rate RF (equation (II-10)),
but may also
@iv) decrease the signal-to-noise ratio by including noise where

the signal is absent.

Thus, T should be chosen as large as possible without incurring the penalty

(iv).

Assuming that an appropriate T has been chosen for the va-
riety of signals to be detected, a subdivision into FFT gates may be made.
It is advisable to overlap processing gates in order to match the signal start
time as closely as possible. Increasing the number of overlapping segments
M trades off a possible coherent gain (i.e., decreases FFT resolution) for
an incoherent gain coupled with a better chance of matching the start of the
signal, Overlap may also be obtained without increasing M, but at the ex-
pense of performing more FFT transforms. There is no change in P_, be-

F
cause, although the number of outputs are increased, they are statistically

II-8
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dependent, and the inclusion of an M-output-gate dead time after a detection

prevents a doubling of the alarm rate.

Another parameter of importance is the prefilter. For a given
variety of signals and noise spectra it is obviously advantageous to filter
out those portions of the spectrum which consist primarily of noise. An ex-
treme example is presented when the signal to be detected and the noise sta-
tistics are completely known. In that case, for a given PF , there exists a

filter which will optimize the probability of detection P_ for the power de-

tector. Since, for a single signal, the deflection detect?r is approximately
a power detector with a narrowband prefilter, it would in general perform
more poorly than such an optimum filter (i. e., the narrowband filter would
not be optimal). If, however, the variety of signals to be detected is large,
a single optimum filter is not possible since one does not wish to filter one
signal at the expense of another, and a likely choice for the prefilter is a
simple bandpass filter. It should be noted that a specific advantage of the
deflection processor is that it provides a bank of filters (the FFT cells) as

opposed to a single filter which may be utilized in detecting a broad variety

of signals.

Finally, let us consider the size of the time constant used in
updating estimates of the noise statistics. If, as in the present study, the
background noise is only quasi-stationary, the noise statistics must be peri-
odically updated. When such an update involves a time average, the averag-
ing time should be chosen short enough to insure short-term stationarity and
yet long enough to provide a reliable estimate. This is extremely important
because the results will directly affect the choice of a detection threshold.

While a detector's ROC curves (P_, versus PD) are independent of any choice

F
of threshold, the actual performance of the detector is not. If a threshold
(possibly time dependent) cannot be set to provide a desired false alarm rate,
then even a superior detector may be impractical to implement or may per-

form poorly.

II-9




SECTION III
NOISE STATISTICS

The design of a detector requires an accurate signal model and
knowledge of the statistical properties of the noise in which it is embedded.
Thus, it is imperative to examine the noise statistics as extensively as pos-
sible. To do this one must choose a homogeneous ensemble of independent
noise samples. If the noise is not stationary (but only one sample is available
at a given time), the ensemble must be chosen within a short enough time pe-

riod to insure approximate stationarity.

In the present case, a continuous 2 hour 40 minute sample of
noise was edited from a Korean Seismic Research Station (KSRS) data tape
for examination and beamformed at 20 km/sec. The 96, 000 points (obtained
at a sample rate of 10/sec) were divided into 3, 000 gates of 3. 2 seconds each
corresponding to a 32-point FFT, and into 6,000 gates of 1. 6 seconds, cor-
responding to a 16-point FFT. The gates were Fourier transformed and the
statistics of the noise power N(k) for each frequency cell k were studied.
Tests indicated independence of the samples Ni , i=1,...,3000 with 95%
confidence. The original noise samples, 0.1 second apart, were not inde-
pendent (i. e., their spectrum was not flat). In addition, application of the
Kolmogorov-Smirnov two-sample test indicated homogeneity with 95% con-

fidence.

The mean and standard deviation of the power spectrum and of

the total power are plotted in decibels versus frequency in Figure III-1.

It is well known that the power of seismic noise is approxi-

mately log-normal (Freedman, 1967 ; Swindell and Snell, 1977). This
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leads us to the conjecture that the same may be true of narrowband seismic
noise (at resolutions of 0.3 Hz and 0. 6 Hz). To test this hypothesis, the
logarithms of the noise spectrum samples were taken and the resulting en-
sembles examined, The means and standard deviations of these distributions

appear in Figure III-2,

Goodness-of-fit tests were made to test the normality of the
log power distributions; the results appear in Table III-1, Although the dis-
tributions of individual FFT cells are different, those above 1.0 Hz all ap-
peared approximately normal at the 0. 05 critical level corresponding to the
test value. Note that no single cell was as close to normal as the logarithm
of the total power (i. e., broadband noise). Examples of some of the indivi-

dual distributions are found in Figures III-3 and III-4.

The above noise sample would appear sufficiently long to set a
threshold for false alarm rates on the order of two per hour (i. e., that value
which the detector output exceeds only six times in the entire 2 2/3 hour noise
sequence). However, such low alarm rates depend only on the tail of the dis-
tribution and as a result are inordinately sensitive to relatively small fluctua-
tions in the statistics. In other words, short-term noise variations will have
a noticeable effect on the threshold. Th?'.s poses the following dilemma: A
long time period is necessary to estimate the threshold, but the threshold

must be dynamic over a much shorter period.

One possible solution (that adapted here) is to assume that the
noise distributions in question depend to a 'close' approximation only on their
first two moments. These parameters, the mean and standard deviation, may
be estimated from a much smaller ensemble than would be required for the ac-
curate determination of the tail of the distribution, Once the mean and stand-
ard deviation have been found, a normalization transforms the distribution to

a canonical one, reasonably independent of the statistical fluctuations, and

the appropriate threshold may be set.
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We now have two compelling reasons for accurate on-line esti-

mation of u'(k) and 0'(k); (1) they are essential parameters in the receiver's

operation in that they are used to normalize the power spectrum, and (2) they

i3 Ao L g 155 a1
s o kg ~ G »

determine the threshold setting for a given false alarm rate. The most ob-
vious method for their computation, a running average, requires (number

samples) x (number frequency cells) x (number beams) words of memory and

can easily become unwieldly. Instead, it is advisable to use a leaky integra-

tor (also known as RC or exponential averaging; Horton, 1969),

. i1 .
p) ~ i) = (Q-)B (k) + €N (III-1)
where
A e-T/T
T = averaging time

H
n

time between samples (3.2 sec or 1. 6 sec)

Z
1

ith time sample, kth frequency cell of © - ze,

for estimating the moments, Some interesting pitfalls exist when it is applied

to the standard deviation o(k). As has been previously indicated, the time

constant T must be chosen large to give a reliable estimate, but small enough
to follow the dynamics of the noise. In the current study €= 0,025 (7=1 min

to 2 min).

III-8
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SECTION IV
EVALUATION

A, INTRODUCTION

The evaluation of a detector is not often an easy task. For the
simple case of a known signal in Gaussian noise, the detectability depends
only on the ratic of the signal power to the standard deviation of the noise
which in turn is proportional to the signal-to-noise ratio (Van Trees, 1968).
The greater this value, the greater the probability of detection (PD) for a
given probability of false alarm (PF). For more complex situations, a rough

estimate of detectability is the 'deflection' criterion:

E[£f(s+n) - £n)]

o(f (n)) (Iv-1)
where
f(x) = detector output for input x
s = signal
n = noise
0(x) = standard deviation of x

which gives the 'distance' between the output distributions for signal-plus-
noise and for noise alone. By varying the signal standard deviation, one
can construct two detector outputs x and y such that x detects more sig-

nals than y but y gives a larger deflection criterion for all P It is also

F.
possible for one detector to be better at low false alarm rates while another
is better when they are high. In short, for most detectors it is necessary

to actually compute their ROC curves (graphs of PD versus PF) in order to

evaluate their performance.

-
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These curves depend on the detector, the signal being detected,
and the noise statistics. In general, for a fixed signal, an increase in signal
power should provide higher detectability; i. e., all points on the ROC curve
would move upwards. To determine ROC curves by compiling a large num-
ber of seismic events is impossible since no two signals will have the same
shape, and estimates of their magnitude are approximate. Thus, the follow-

ing procedure was implemented.

A seismic event s(t) of duration T seconds was chosen,
beamformed and edited. Several thousand noise samples ni(t) of the same
duration, T, were also edited. The detector was then run separately on the
samples ni(t) (noise alone) and aa(t)+ni(t) (signal-plus-noise at a fixed peak
signal-to-RMS-noise ratio dependent on a). For each value of a, a ROC
curve was computed from the two output distributions (see Figure IV-1 for

details).

In the present study, the processing gate T was taken to be
3.2 seconds, while FFT transforms of both 16 and 32 points were examined,
In the former case the probability distributions were determined from 6000
sample poiﬁts; in the latter, from 3000. Six ROC curves were computed for
values of a corresponding to signal-to-noise ratios of -6 dB, -3 dB, 0 dB,
3 dB, 6 dB, and 9 dB. For each curve the probability of detection, PD’ was
F 0.001, 0.002, 0.004, 0.008,
0.02, and 0. 04, corresponding to false alarms of 1.1, 2.2, 4.5, 9.0, 22.5,

plotted for false alarm probabilities of P

and 45, 0 per hour. This was sufficient for comparing detectors even though
some lower rates, less than PF= 0. 001, would also be of interest. We note

that for PF= 0. 001 and only 3000 sample points, the results are subject to
some statistical variation, and for even smaller values a larger sample space

would certainly be necessary.

Four representative short-period seismic events recorded at

KSRS were beamformed and edited (32 sample points at a rate of 10 per
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second) for use as signals in evaluating the detector. These signals, referred
toas A, B, C, and D, are documented in Table IV-1, and their spectra appear
in Figure IV-2. Note the presence of high frequency energy in C and D (pre-
sumed explosions) not found in A and B. The three hours of noise analyzed

in Section III was also used in the simulation. The prefilter consisted of a
bandpass filter from 0.8 Hz to 3.6 Hz (cells 4 to 12 in a 32-point FFT trans-
form). However, for event C, the low signal-to-noise ratio in the above band
(2. 3 dB) necessitated a narrower prefilter (1.4 Hz to 3, 6 Hz) since the model
signal could not be accurately estimated throughout the larger band, For the
l6-point transforms, the corresponding prefilters were 0. 93 Hz to 3.5 Hz

(cells 2 to 6) and 1.7 Hz to 3.5 Hz (cells 3 to 6).

B, COMPARISON OF DEFLECTION DETECTOR AND POWER DETECTOR

We now consider the performance of the two log power detectors
described by equations (II-1) and (II-2). Before presenting the results, let us
estimate the detectors' relative behavior using equations (II-6) through (II-9)
and Figure II-2. For a 3.2-sec gate the gain of the deflection processor, for
models A, B, C, and D documented in Table IV-1, is:

G,-G_ = CGd+IGd-IGp

= CGd +2.1-4,8 signals A, B, D

= CGd+2.0-4.2 signal C

= CGd - 2.7 signals A, B, D

= CGd - 2,2 signal C. (IV-2)

Table IV-2 contains the calculation of the coherent gain and the numerical

results,

Iv-4
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ROC curves for the four signals at signal-to-noise ratios of

-6 dB, -3 dB, 0dB, 3 dB, 6 dB, and 9 dB are pictured in Figure IV-3. It
can be seen that in comparison with the power detector the deflection detector
performs better for cases C and D, approximately equally for case A, and
more poorly in case B. In order to estimate the actual gains and compare

them with those predicted in Table IV-2, Figure IV-4 contains plots of PD

versus signal-to-noise ratio with P_ fixed at 0. 004. As seen in Table IV-3,

F
the actual gains found from Figure IV-4 reflect those estimated reasonably

well, especially considering the approximate nature of our reasoning (i.e.,
D’ PF' and even S/N).
Loosely speaking, when the signal is concentrated at low frequencies, the

the true gains depend in a non-linear manner on P

region of highest noise, filtering provides little coherent gain and the power
detector is preferable. For those having more high frequency energy (C and
D), the deflection detector is better, (For the curious reader, a typical set
of probability distributions (noise and signal-plus-noise) for S/N = 0 dB are

included in Figure IV-5,)

C. VARIATIONS

Detection curves (at P_= 0, 004) comparing the effects on the

F
deflection detector of the FFT transform length, the intermediate logarithmic
transformation, and forming the deflection-power are found in Figures IV-6

and IV-7. A brief analysis of these results now follows.
| 16-Point Transform

Let us examine the consequences of reducing the FFT trans-
form length of the deflection detector from 32 to 16. According to Section
II-B-3, this should exchange coherent gain for incoherent gain (10 log V2
= 1.5 dB). In Table IV-4, we estimate the performance of the detector rela-
tive to a 32-point transform and compare it with that deduced from Figure

IV-6 by subtracting S/N for the 32-point transform from that for the 16-point

=3
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TABLE IV-3

| - COMPARISON OF ACTUAL GAINS
g OF THE DEFLECTION DETECTOR OVER THE POWER DETECTOR
i TO THOSE ESTIMATED (Gd-Gp) FOR FOUR SIGNALS

ot Estimated Actual Gain For
o e Total Gain | Pp = 0.004; P = 0.5
A 1.6 -0.4dB
B -1.1 -1.9dB
F c 3.0 1.7 dB
i D 3.5 2.5 dB
i
|
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transform at PD= 0.5. Note that for the 16-point transform, the deflection

detector did not always sharply distinguish a single frequency cell (partly be-
cause the simulation split the signal into two 16-point segments) which neces-
sitated listing more than one ﬁlé' Except for one case, it was advantageous

to use the longer FFT transform.

2. Logarithmic Transformation

We recall that the purpose of the logarithmic transformation,
equation (II-4), was to 'Gaussianize' the noise and thus improve the ability
of the deflection statistic Z =(P'-u')/o' to reflect signal detectability. In
this instance, our intuition appears to have failed us. For the signals and
noise examined, no such improvement was present. In fact, the transforma-
tion produced a slight decrease in performance. Typical results are pictured

in Figure IV-7.

3 Deflection - Power Detector

As may be seen in Figure IV-5, the performance of the deflec-
tion power detector (equation (II-2)) was uniformly poorer than that of the de-
flection detector or power detector. This was considered somewhat surpris-
ing, and it was postulated that in a different situation (different signal and
noise spectra) it might perform better. In view of the result that S(k)/.uz(k)
is an optimal filter for a power detector, i.e., for detection of a signal of
known power spectrum in noise with a Gaussian power spectrum (Moll, 1974;
Eckhart, 1972), it was decided to create a synthetic signal by modifying the
spectrum of event D giving it the property 1/0(k) = S(k)/uz(k). As evidenced
in Figure IV-8, there was a dramatic improvement. This does not, however,
change the conclusion of the previous evaluation; i. e., that the deflection-

power detector is not suitable for short-period seismic detection.
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g SECTION V
: %} CONCLUSIONS

: 1 The deflection detector and the conventional power detector
shown on Figure II-1 were compared and evaluated on a set of four seismic
events buried in seismic noise. The detection performance of the deflection
processor was the same for one of the signals, showed a 2 dB relative loss

in signal-to-noise ratio processing ability for a second signal, and a 2 dB

gain for the two remaining signals. More generally, it was found that the
deflection algorithm is at an advantage in detecting signals of enhanced ener-

gy content above 1l.25 Hz. Such signals appear to have narrowband signal-

denytl

to-noise spectra with seismic noise power concentrated at the lower frequen-

cies. This results in greater coherent gain.

The potential us.efulness of the deflection detector is perhaps
better visualized in a more general setting. Figure V-1 illustrates three
levels of signal information and appropriate detector configurations. Although
the deflection detector possesses more versatility when the variety of signal
spectra is large. For a single known signal, the ideal detector is a matched
filter. However, for the detection of a whole variety of signals of diverse
spectral content, the matched filter or shaped filter should be replaced by a
; bank of filters (one for each signal type) and a rule for deciding between sig-
nals. The deflection processor actually does this in a rudimentary manner

with FFT cells used as bandpass filters. One might hope that a deflection

criterion could also work at the second level shown on Figure V-1, Such a

detector, for a variety of three signal spectra, is diagrammed in Figure V-2,
Clearly, a crucial design factor is the determination of the number of signal

types in the class to be detected and the modeling of those signals. Thus, an

!
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;; evaluation of the usefulness of the deflection detector and/or the construction
1" 3 of a more powerful detector similar to that of Figure III-2 require a thorough
i
, study of the signal spectra in the region of interest and of the noise spectra.
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APPENDIX A

In many situations, it is desirable to obtain simultaneous esti-
mates of the means and standard deviations for a large number of parameters.
For example, in broadband detection several hundred frequency cells mey be
involved. A running average over a hundred points would require in the
neighborhood of 20, 000 to 50, 000 words of memory. A common procedure

for circumventing this difficulty is a weighted average.

p,n+1=(1-e)p,n+ €y (A-1)
where

Ko = estimated mean at sample n

: s nth sample point

o<€< 1.

Equation (A-1) is analogous to a RC circuit average with

SET
l-€ =e
T 1
~1-T—~l-? (A-2)

where T is the time between samples and 7= RC is the response (averaging)
time (Horton, 1969), and 7/T ~ N corresponds to the number of samples

averaged.

A similar formula,

2
9 n+l

2 62 2
=(1-e)g-n+(e-—2—)(yn-p.n) (A-3)

for the standard deviation involves possible pitfalls, which we proceed to

discuss.
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We note that the extra factor ze is introduced,

2
= > —G— = € —Z_-_L- ’
B= e 2 2

in order that o-z be an asymptotically unbiased estimate of the variance. It
corresponds to the well-known factor N/N-1 used in estimating the variance
for N samples (Bendat and Piersol, 1966). More precisely, let w and o “
be the true mean and variance, and define

Moo= lim E(p,)

Nn— ©
o” = lim E(a?), (A-4)
n—so B
which exist since the expectations of equations (A-1) and (A-3) are stable
linear difference equations (€ < 1). Taking the expectation of both sides of

equation (A-1) gives

E(p J=0-€e)E(p )+ ep, (A-5)
so that €L, = €M (A-5a)
or

Ko = K . (A-6)
The square of equation (A-1) gives
2 2 2 2 2

Mgar = @R g EEET G Fo p b €Ty (A-7)

Let
2 ” z
(p5)_ = lm E(p)

n— o
Then,since K’ and > & are independent and E(ynz) = 0'2 + p.z, equation (A-7)
yields

(2e - € 2) (#z)m =2¢ (1-¢€ )[L2+ 62(O'z-i- #2)

(A-8)




From equation (A-3)

2 a2 2 2
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2 2
g & O (A-9)
We note that for large N (i.e., N >10), E is much less than one, and thus
b €
; the error incurred by replacing ¢ - > in equation (A-3) by ¢ is
negligible. |
3 Two other candidates for recursion formulae for the variance
4 are ]
b | o
b ek e 2 € 2 2
k Tntl -(l-e)a'n i A +Z-2£) (yn 5 'u'n) (A=10)
and
"t; 2 e 2 €
} | FTnst e Twn T Byt g o)
where
=2 Y . 2 2
xn+l = (1 -¢€ )xn + eyn ¢ (A-11)

Note: o represents the method of equation (A-3); o, of (A-10); and 3’, of (A-11).
¢ \-2 2 -

None of these is biased, i.e., 0,= 0w = 0 ; however, while the behavior

of equation (A-3) and(A-11) is excellent, that of (A-10) is intolerable (see

Figure A-1).

? The cause of the difficulties lies in the standard deviation of
the estimated variance, i.e., in

2 2.2
- (o'estimate R =12

The quantity in (A-12) may be computed for the three recursion formulae

‘ ! (A-3), (A-10), and (A-1ll) by substituting the appropriate recursion formula

A-3
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in (A-12) and applying the techniques used in equations (A-5) through (A-9).

The algebra is extremely tedious involving the calculation of the various

moments (E (02[ estimateu:); £=0,1, 2, and k = 0,...,4) and thus only

the final expressions will be presented. To the first order in €, we have
Etat « a°F wd [9-—12—"—4] : (A-13)
E(&i -0 2)2=e[%'—°f +2uB + op 2] (A-14)
E(Ei- 02)2=e [%;"—t:} (A-15)

3 4
where B = E(yn - u )3 and G - E(yn - pu) are the third and fourth central
n:oments of the distribution (assumed stationary), respectively. For the

Gaussian case, these may be simplified:

E(Of,- 02)2~604 (A-16)

2.2

E(?ri ~0% ~ew0t + 0% u? (A-17)

B(T - o)~ €0t (A-18)

For small € (i.e., large N) the formulae (A-16) to (A-18) are
quite accurate. A comparison between the values computed by (A-16) and
(A-18) with the exact values for the Gaussian case appear in Figure A-2.

It follows from equations (A-12) through (A-15) that 32 and 02 have compara-

~2
blezbehavior and are always better than 0 . In general, for small values of

K_,
ol 2
of Oe and T 4 will be of the same order, whereas that of G4 will be much

2 2
all three will give similar results; however, for 4 << ¢ , the variance

larger. This explains the erratic behavior observed in Figure A-1.
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FIGURE A-2

GRAPHS OF THE STANDARD DEVIATION OF THE ESTIMATED
VARIANCE VERSUS THE RATIO OF MEAN TO STANDARD DEVIATION
FOR GAUSSIAN DISTRIBUTIONS FOR (a) € = 0. 2 AND (b)e= 0, 02.
THE SCLID LINES REFRESENT THE TRUE VALUE AND THE O'S
REPRESENT THE APPROXIMATIONS OF (Al6) TO(A18)
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